1. 数据清洗、丰富、标准化与治理
由于接入数据中台的业务系统众多,数据结构不尽相同,原始数据通常是杂乱和不完全的。同时,新旧数据共存的问题也很常见,导致同一字段存在多个不同的数据值。为实现数据价值化,我们需要:
数据标准化:建立统一的数据标准,使数据格式一致。
数据清洗:使用ETL(抽取、转换、加载)工具,去除冗余、不准确或不完整的数据,确保数据一致性。
数据丰富:将内部数据与外部数据(如市场数据、社交媒体数据)结合,补充业务背景,提升数据的全面性和价值。
通过这些步骤,可以提升数据的质量和可用性,并将数据统一同步回原业务系统,解决数据不同步和数据更新的问题,从而最大化数据中台的作用。
图 1 功能架构图
图1是最近在做的数字消防相关的业务时总结出来的数据治理功能架构图,图中数据处理即为数据清洗、丰富、标准化与治理。在消防行业中,方方面面都会用到,比如消防设备消防人员信息的标准化与治理,消防人员信息的清洗和丰富等,将所有消防相关系统通过数据采集方式接入系统,经过数据处理,将统一、治理过的标准数据返回的数据资源池,同时与相关系统交互,与标准数据对比,矫正系统错误的数据,提升系统的实时同步与信息的准确性。
2. 数据可视化与自助分析
数据中台不仅需要对数据进行标准化和治理,还要通过快速统计和分析,帮助业务人员做出决策。光有抽象的数字不够直观,数据可视化能够将分析结果以图表形式呈现,使业务决策者更容易发现趋势和识别问题。实现数据可视化可以通过现有的低门槛工具,或根据业务需求自行研发通用的可视化工具,定制生成报告和数据分析。这样,数据中台中的数据不仅变得有价值,还能真正实现数据驱动。
基于图1提供的数据,将各种数据的分析结果以可视化形式呈现,是在从事消防大数据工作后期开始的工作,这期间,自己开发了数据专题可视化系统,帮助实现大数据的数据可视化与自主分析,涉及到的统计分析可视化有:基层消管数据统计分析、消防设备存量消耗图等,目标就是将大数据分析结果有效直观的呈现给相关人员。
3. 数据共享与协同创新
数据中台的另一个重要目标是打破部门间的数据孤岛,实现数据共享。通过开放标准化的API接口,不同部门和业务系统之间的数据可以灵活调用。这样,各团队能够在统一的数据平台上进行协作,同时利用数据中台的数据推动业务创新。这使得数据变得更加鲜活,也唤醒了数据中台的数据潜力。
图1中也涉及到了数据共享,消防行业的数据共享,涉及到地震系统、天气系统、卫星系统等,通过将行业内的行业数据进行共享,或者将行业外的第三方数据进行共享,数据糅合到一块,综合给出最佳解决方案。地震数据和天气数据再加上消防设备数据以及消防应急力量的数据,系统能给出相对地震及天气适配多少消防设备,以及适合哪部分应急力量等等。
4. 构建数据分析与挖掘能力
数据中台是数据分析和挖掘的“引擎”。我认为唤醒中台的数据就是要运用好这个引擎,是要将引擎中的数据更好的运用到业务中,这个时候数据分析的方向尤为重要,在当前这个大数据泛滥的时代,进行数据分析要分类更清晰,方向更准确,即要建立细致的分析模型 ,在从业过程中,涉及到的有电信行业相关软件项目中的客户细分模型和市场预测模型等,开发过程中,以海量的电信用户基本信息为基础,建立好相应完整的模型,然后将数据对号入座的关联起来,将分析的结果同业务紧密联系起来。另一方面也可以作为学习挖掘的数据基础,基于目前流行的机器学习模型,进行预测、分类和聚类等操作,开发过程中涉及到的有电信行业相关的软件项目中的销售预测 、用户行为预测等等,充分运用历史话单数据进行机器学习,总结汇总用户的行为习惯,准确标准的进行销售预测和用户行为预测。从而针对性的满足用户及客户的需求,提升自身的工作效率。
结语
总之,唤醒数据中台的数据就是要让数据变得鲜活和有价值,使其能够参与到相关业务中。通过这些措施,我们可以实现数据的价值化,使数据真正成为业务决策和创新的核心动力。